domingo, 31 de mayo de 2015

Fricción

Fig. 1 - Fricción estática: no se inicia el movimiento si la fuerza tangencial aplicada Thace que el ángulo sea menor a φ0 (no supera a Fr).
Se define como fuerza de rozamiento o fuerza de fricción, a la fuerza entre dos superficies en contacto, a aquella que se opone al movimiento relativo entre ambas superficies de contacto (fuerza de fricción dinámica) o a la fuerza que se opone al inicio del deslizamiento (fuerza de fricción estática). Se genera debido a las imperfecciones, mayormente microscópicas, entre las superficies en contacto. Estas imperfecciones hacen que la fuerza perpendicular R entre ambas superficies no lo sea perfectamente, sino que forme un ángulo φ con la normal N (el ángulo de rozamiento). Por tanto, la fuerza resultante se compone de la fuerza normal N (perpendicular a las superficies en contacto) y de la fuerza de rozamiento F, paralela a las superficies en contacto.

Rozamiento entre superficies de dos sólidos[editar]

En el rozamiento entre dos cuerpos se ha observado los siguientes hechos:
  1. La fuerza de rozamiento tiene dirección paralela a la superficie de apoyo.
  2. El coeficiente de rozamiento depende exclusivamente de la naturaleza de los cuerpos en contacto, así como del estado en que se encuentren sus superficies.
  3. La fuerza máxima de rozamiento es directamente proporcional a la fuerza normal que actúa entre las superficies de contacto.
  4. Para un mismo par de cuerpos (superficies de contacto), el rozamiento es mayor un instante antes de que comience el movimiento que cuando ya ha comenzado (estático Vs. cinético).
El rozamiento puede variar en una medida mucho menor debido a otros factores:
  1. El coeficiente de rozamiento es prácticamente independiente del área de las superficies de contacto.
  2. El coeficiente de rozamiento cinético es prácticamente independiente de la velocidad relativa entre los móviles.
  3. La fuerza de rozamiento puede aumentar ligeramente si los cuerpos llevan mucho tiempo sin moverse uno respecto del otro ya que pueden sufrir atascamiento entre sí.
Algunos autores sintetizan las leyes del comportamiento de la fricción en los siguientes dos postulados básicos:1
  1. La resistencia al deslizamiento tangencial entre dos cuerpos es proporcional a la fuerza normal ejercida entre los mismos.
  2. La resistencia al deslizamiento tangencial entre dos cuerpos es independiente de las dimensiones de contacto entre ambos.
La segunda ley puede ilustrarse arrastrando un bloque sobre una superficie plana. La fuerza de arrastre será la misma aunque el bloque descanse sobre la cara ancha o sobre un borde más angosto. Estas leyes fueron establecidas primeramente por Leonardo da Vinci al final del siglo XV, olvidándose después durante largo tiempo; posteriormente fueron redescubiertas por el ingeniero francés Amontons en 1699. Frecuentemente se les denomina también leyes de Amontons.

Tipos de fricción[editar]

Fig. 2 - Diagrama de fuerzas para el esquema de la figura 1. Según sea la magnitud del empuje T habrá fricción estática (equilibrio) o cinética (con movimiento).
Existen dos tipos de rozamiento o fricción, la fricción estática (FE) y la fricción dinámica (FD). El primero es la resistencia que se debe superar para poner en movimiento un cuerpo con respecto a otro que se encuentra en contacto. El segundo, es la resistencia, de magnitud considerada constante, que se opone al movimiento pero una vez que éste ya comenzó. En resumen, lo que diferencia a un roce con el otro, es que el estático actúa cuando los cuerpos están en reposo relativo en tanto que el dinámico lo hace cuando ya están en movimiento.
La fuerza de fricción estática, necesaria para vencer la fricción homóloga, es siempre menor o igual al coeficiente de rozamiento entre los dos objetos (número medido empíricamente y que se encuentra tabulado) multiplicado por la fuerza normal. La fuerza cinética, en cambio, es igual al coeficiente de rozamiento dinámico, denotado por la letra griega \mu \,, por la normal en todo instante.
No se tiene una idea perfectamente clara de la diferencia entre el rozamiento dinámico y el estático, pero se tiende a pensar que el estático es algo mayor que el dinámico, porque al permanecer en reposo ambas superficies pueden aparecer enlaces iónicos, o incluso microsoldaduras entre las superficies, factores que desaparecen en estado de movimiento. Éste fenómeno es tanto mayor cuanto más perfectas son las superficies. Un caso más o menos común es el del gripaje de un motor por estar mucho tiempo parado (no sólo se arruina por una temperatura muy elevada), ya que al permanecer las superficies, del pistón y la camisa, durante largo tiempo en contacto y en reposo, pueden llegar a soldarse entre sí.
Un ejemplo bastante común de fricción dinámica es la ocurrida entre los neumáticos de un auto y el pavimento en un frenado abrupto.
Como comprobación de lo anterior, se realiza el siguiente ensayo, sobre una superficie horizontal se coloca un cuerpo, y le aplica un fuerza horizontal F , muy pequeña en un principio, se puede ver que el cuerpo no se desplaza, la fuerza de rozamiento iguala a la fuerza aplicada y el cuerpo permanece en reposo, en la gráfica se representa en el eje horizontal la fuerza F aplicada, y en el eje vertical la fuerza de rozamiento Fr.
Entre los puntos O y A, ambas fuerzas son iguales y el cuerpo permanece estático; al sobrepasar el punto A el cuerpo súbitamente se comienza a desplazar, la fuerza ejercida en A es la máxima que el cuerpo puede soportar sin deslizarse, se denomina Fe o fuerza estática de fricción; la fuerza necesaria para mantener el cuerpo en movimiento una vez iniciado el desplazamiento es Fd o fuerza dinámica, es menor que la que fue necesaria para iniciarlo (Fe). La fuerza dinámica permanece constante.
Si la fuerza de rozamiento Fr es proporcional a la normal N, y a la constante de proporcionalidad se la llama   \mu \, :
F_r = \mu N \,
Y permaneciendo la fuerza normal constante, se puede calcular dos coeficientes de rozamiento: el estático y el dinámico como:
 \mu_e = \frac{Fe}{ N }, \qquad \mu_d = \frac{Fd}{N}
donde el coeficiente de rozamiento estático \mu_e\, corresponde al de la mayor fuerza que el cuerpo puede soportar inmediatamente antes de iniciar el movimiento y elcoeficiente de rozamiento dinámico \mu_d\, corresponde a la fuerza necesaria para mantener el cuerpo en movimiento una vez iniciado.

Fricción estática[editar]

Es la fuerza que se opone al inicio del deslizamiento. Sobre un cuerpo en reposo al que se aplica una fuerza horizontal F, intervienen cuatro fuerzas:
F: la fuerza aplicada.
Fr: la fuerza de rozamiento entre la superficie de apoyo y el cuerpo, y que se opone al deslizamiento.
P: el peso del propio cuerpo, igual a su masa por la aceleración de la gravedad.
N: la fuerza normal, con la que la superficie reacciona sobre el cuerpo sosteniéndolo.
Dado que el cuerpo está en reposo la fuerza aplicada y la fuerza de rozamiento son iguales, y el peso del cuerpo y la normal:

   \begin{cases}
      P = N \\
      F = F_r
   \end{cases}
Se sabe que el peso del cuerpo P es el producto de su masa por la aceleración de la gravedad (g), y que la fuerza de rozamiento es el coeficiente estático por la normal:
 P = N = mg \,
 F = F_r  = \mu_e N \,
esto es:
 F = F_r  = \mu_e mg \,
La fuerza horizontal F máxima que se puede aplicar a un cuerpo en reposo es igual al coeficiente de rozamiento estático por su masa y por la aceleración de la gravedad.

Rozamiento dinámico[editar]

Dado un cuerpo en movimiento sobre una superficie horizontal, deben considerarse las siguientes fuerzas:
Fa: la fuerza aplicada.
Fr: la fuerza de rozamiento entre la superficie de apoyo y el cuerpo, y que se opone al deslizamiento.
P: el peso del propio cuerpo, igual a su masa por la aceleración de la gravedad.
N: la fuerza normal, que la superficie hace sobre el cuerpo sosteniéndolo.
Como equilibrio dinámico, se puede establecer que:

   \begin{cases}
      P = N \\
      F = F_a - F_r
   \end{cases}
Sabiendo que:
 P = N = mg \,
 F_r = \mu_d N \,
 F = ma \,
prescindiendo de los signos para tener en cuenta solo las magnitudes, se puede reescribir la segunda ecuación de equilibrio dinámico como:
 \mathbf{F}_a = \mu_d m\mathbf{g} + m\mathbf{a}, \quad \Rightarrow \quad \mathbf{a} = \frac{\mathbf{F}_a}{m} - \mu_d\mathbf{g}
Es decir, la fuerza de empuje aplicada sobre el cuerpo \mathbf{F}_a es igual a la fuerza resultante \mathbf{F} menos la fuerza de rozamiento \mathbf{F}_r que el cuerpo opone a ser acelerado. De esa esa misma expresión se deduce que la aceleración \mathbf{a} que sufre el cuerpo, al aplicarle una fuerza Fa mayor que la fuerza de rozamiento Fr con la superficie sobre la que se apoya.

Rozamiento en un plano inclinado[editar]

Rozamiento estático[editar]

Si sobre una línea horizontal r, se tiene un plano inclinado un ángulo  \alpha \, , y sobre este plano inclinado se coloca un cuerpo con rozamiento, se tendrán tres fuerzas que intervienen:
P: el peso del cuerpo vertical hacia abajo según la recta u, y con un valor igual a su masa por la aceleración de la gravedad: P = mg.
N: la fuerza normal que hace el plano sobre el cuerpo, perpendicular al plano inclinado, según la recta t
Fr: la fuerza de rozamiento entre el plano y el cuerpo, paralela al plano inclinado y que se opone a su deslizamiento.
Si el cuerpo está en equilibrio, no se desliza, la suma vectorial de estas tres fuerzas es cero:
\mathbf{P} +  \mathbf{F}_r +  \mathbf{N} = 0
Lo que gráficamente seria un triángulo cerrado formado por estas tres fuerzas, puestas una a continuación de otra, como se ve en la figura.
El peso puede descomponerse en una componente normal al plano Pn y una componentes tangente al plano Pt y la ecuación anterior puede escribirse componente a componentes simplemente como:
 \begin{pmatrix} P_t\\ P_n \end{pmatrix} + \begin{pmatrix} F_r \\ 0 \end{pmatrix} + \begin{pmatrix} 0\\ N \end{pmatrix} = \mathbf{0}
 \begin{pmatrix} P\sin\alpha \\ P\cos\alpha \end{pmatrix} = -
\begin{pmatrix} \pm\mu_e N \\ N \end{pmatrix}
Dividiendo la primera componente entre la segunda se obtiene como resultado:
 \frac{\sin \alpha }{\cos \alpha } = \tan \alpha = \pm\mu_e \,
El coeficiente de rozamiento estático es igual a la tangente del ángulo del plano inclinado, en el que el cuerpo se mantiene en equilibrio sin deslizar, ello permite calcular los distintos coeficientes de rozamiento, simplemente colocando un cuerpo de un material concreto sobre un plano inclinado del material con el que se pretende calcular su coeficiente de rozamiento, inclinando el plano progresivamente se observa el momento en el que el cuerpo comienza a deslizarse, la tangente de este ángulo es el valor del coeficiente de rozamiento. Del mismo modo conocido el coeficiente de rozamiento entre dos materiales podemos saber el ángulo máximo de inclinación que puede soportar sin deslizar.

Rozamiento dinámico[editar]

En el caso de rozamiento dinámico en un plano inclinado, se tiene un cuerpo que se desliza, y siendo que está en movimiento, el coeficiente que interviene es el dinámico  \mu_d \, , así como una fuerza de inercia Fi, que se opone al movimiento, el equilibrio de fuerzas se da cuando:
  \mathbf{P} + \mathbf{F}_r + \mathbf{N} + \mathbf{F}_i = 0
descomponiendo los vectores en sus componentes normales y tangenciales se tiene:

   \begin{cases}
      P_n = N  \\
      P_t - F_r = F_i
   \end{cases}
teniendo en cuenta que:
 F_r  = \mu_d N \,
 P = mg \,
 F_i = ma \,
y como en el caso de equilibrio estático, se tiene:
 P_n = P \cos ( \alpha ) \,
 P_t = P \sin ( \alpha ) \,
Con estas ecuaciones se determina las condiciones de equilibrio dinámico del cuerpo con fricción en un plano inclinado. Si el cuerpo se desliza sin aceleración (a velocidad constante) su fuerza de inercia Fi será cero, y se puede ver que:
 P \sin ( \alpha ) = \mu_d P \cos ( \alpha ) \,
esto es, de forma semejante al caso estático:
 \frac{\sin ( \alpha ) }{\cos ( \alpha ) } = \tan ( \alpha ) = \mu_d \,
con lo que se puede decir que el coeficiente de rozamiento dinámico  \mu_d \,  de un cuerpo con la superficie de un plano inclinado, es igual a la tangente del ángulo del plano inclinado con el que el cuerpo se desliza sin aceleración, con velocidad constante, por el plano.

Valores de los coeficientes de fricción[editar]

Coeficientes de rozamiento de algunas sustancias[cita requerida]
Materiales en contacto \mu_e \,  \mu_d \,
Articulaciones humanas0,020,003
Acero // Hielo0,0280,09
Acero // Teflón0,040,04
Teflón // Teflón0,040,04
Hielo // Hielo0,10,03
Esquí (encerado) // Nieve (0 °C)0,10,05
Acero // Acero0,150,09
Vidrio // Madera0,250,2
Caucho // Cemento (húmedo)0,30,25
Madera // Cuero0,50,4
Caucho // Madera0,70,6
Acero // Latón0,50,4
Madera // Madera0,70,4
Madera // Piedra0,70,3
Vidrio // Vidrio0,90,4
Caucho // Cemento (seco)10,8
Cobre // Hierro (fundido)10,3
En la tabla se listan los coeficientes de rozamiento de algunas sustancias donde
 \mu_e =   Coeficiente de rozamiento estático,
 \mu_d =   Coeficiente de rozamiento dinámico.
Los coeficientes de rozamiento, por ser relaciones entre dos fuerzas son magnitudes adimensionales.

Rozamiento entre sólido y fluido[editar]

La fricción aerodinámica depende del régimen o tipo de flujo que exista alrededor del cuerpo en movimiento:
  • Cuando el flujo es laminar la fuerza de oposición al avance puede modelizarse como proporcional a la velocidad del cuerpo, un ejemplo de este tipo de resistencia aerodinámica es la ley de Stokes para cuerpos esféricos.
  • Cuando el cuerpo se mueve rápidamente el flujo se vuelve turbulento y se producen remolinos alrededor del cuerpo en movimiento, y como resultado la fuerza de resistencia al avance es proporcional al cuadrado de la velocidad (v2), de hecho, es proporcional a la presión aerodinámica.

Rozamiento con lubricación[editar]

Una cuestión de interés práctico es un problema mixto donde pueden aparecer tanto fenómenos de rozamiento entre sólidos como entre fluido y sólido, dependiendo de la velocidad. Se trata del caso de dos superficies sólidas entre las cuales existe una fina capa de fluido. Stribeck2 demostró que a muy bajas velocidades predomina un rozamiento como el que ocurre entre dos superficies secas, y a velocidades muy altas predomina un rozamiento hidrodinámico. La mínima fricción se alcanza para una velocidad intermedia dependiente de la presión del fluido, su "viscosidad cinemática".

Rozamiento en medios fluidos[editar]

La viscosidad es una medida de la resistencia de un fluido que está siendo deformado por una presión, una tensión tangencial o una combinación de tensiones internas. En términos generales, es la resistencia de un líquido a fluir, comúnmente dicho, es su "espesor". Viscosidad describe la resistencia interna de un líquido a fluir y puede ser pensado como una medida de la fricción del fluido. Así, el agua es "delgada", ya que tiene baja viscosidad, mientras que el aceite vegetal es "densa", con una mayor viscosidad. Todos los fluidos reales (excepto los superfluidos) tienen cierta resistencia a la tensión. Un fluido que no tiene resistencia al esfuerzo cortante se conoce como un fluido ideal o líquido no viscoso.
Por ejemplo, un magma de alta viscosidad creará un volcán alto, porque no se puede propagar hacia abajo con suficiente rapidez; la lava de baja viscosidad va a crear un volcán en escudo, que es grande y ancho. El estudio de la viscosidad se conoce como reología.
El modelo más simple de fluido viscoso lo constituyen los fluidos newtonianos en los cuales el vector tensión, debido al rozamiento entre unas capas de fluido y otras, viene dado por:
\tau_{ij} = \mu \left(\frac{\part u_i}{\part x_j}+\frac{\part u_j}{\part x_i}\right)
Donde:
(u_x,u_y,u_z)\,, son las componentes de la velocidad.
x_i\, son las coordenadas cartesinas (x, y, z).
Para un flujo unidimensional la anterior ecuación se reduce a la conocida expresión:
\tau = \mu \frac{du}{dx}
Resultado de imagen para fricciónResultado de imagen para fricciónResultado de imagen para fricciónResultado de imagen para fricción

Trabajo (física)

Trabajo (W)

Trabajo realizado por una fuerza constante.
MagnitudTrabajo (W)
DefiniciónProducto de la fuerza ejercida sobre un cuerpo por su desplazamiento
TipoMagnitud escalar
Unidad SIJulio (J)
Otras unidadesKilojulio (kJ)
Kilográmetro (kgm)
[editar datos en Wikidata]
En mecánica clásica, se dice que una fuerza realiza trabajo cuando altera el estado de movimiento de un cuerpo. El trabajo de la fuerza sobre ese cuerpo será equivalente a la energía necesaria para desplazarlo1 de manera acelerada. El trabajo es una magnitud física escalar que se representa con la letra \ W (del inglés Work) y se expresa en unidades de energía, esto es en julios o joules (J) en el Sistema Internacional de Unidades.
Ya que por definición el trabajo es un tránsito de energía,2 nunca se refiere a él como incremento de trabajo, ni se simboliza como ΔW.

El trabajo en mecánica[editar]

Trabajo de una fuerza.
Consideremos una partícula P sobre la que actúa una fuerza F, función de la posición de la partícula en el espacio, esto es F=F(\mathbf r) y sea \mathrm d \mathbf r un desplazamiento elemental (infinitesimal) experimentado por la partícula durante un intervalo de tiempo \mathrm d t. Llamamos trabajo elemental, \mathrm d W, de la fuerza \mathbf F durante el desplazamiento elemental \mathrm d \mathbf r al producto escalar \ F \cdot \mathrm d \mathbf r; esto es,
\mathrm d W=\mathbf F \cdot \mathrm d \mathbf r \,
Si representamos por \mathrm d s la longitud de arco (medido sobre la trayectoria de la partícula) en el desplazamiento elemental, esto es \mathrm d s = |\mathrm d \mathbf r| , entonces el vector tangente a la trayectoria viene dado por \mathbf e_{\text{t}} = \mathrm d \mathbf r / \mathrm d s y podemos escribir la expresión anterior en la forma
\mathrm d W=\mathbf F \cdot \mathrm d \mathbf r = 
\mathbf F \cdot \mathbf e_{\text{t}} \mathrm d s =
(F \cos\theta )\mathrm d s = F_{\text{s}} \mathrm d s \,
donde \theta representa el ángulo determinado por los vectores \mathrm d \mathbf F y \mathbf e_{\text{t}} y F_{\text{s}} es la componente de la fuerza F en la dirección del desplazamiento elemental \mathrm d \mathbf r.

El trabajo realizado por la fuerza \mathbf F durante un desplazamiento elemental de la partícula sobre la que está aplicada es una magnitud escalar, que podrá ser positiva, nula o negativa, según que el ángulo \theta sea agudo, recto u obtuso.
Si la partícula P recorre una cierta trayectoria en el espacio, su desplazamiento total entre dos posiciones A y B puede considerarse como el resultado de sumar infinitos desplazamientos elementales \mathrm d \mathbf r y el trabajo total realizado por la fuerza \mathbf F en ese desplazamiento será la suma de todos esos trabajos elementales; o sea
W_{\text{AB}}=\int_{\text{A}}^{\text{B}} \mathbf F \cdot \mathrm d \mathbf r \,
Esto es, el trabajo viene dado por la integral curvilínea de \mathbf F a lo largo de la curva C que une los dos puntos; en otras palabras, por la circulación de \mathbf F sobre la curva C entre los puntos A y B. Así pues, el trabajo es una magnitud física escalar que dependerá en general de la trayectoria que una los puntos A y B, a no ser que la fuerza \mathbf F seaconservativa, en cuyo caso el trabajo resultará ser independiente del camino seguido para ir del punto A al punto B, siendo nulo en una trayectoria cerrada. Así, podemos afirmar que el trabajo no es una variable de estado.

Casos particulares[editar]

Fuerza constante sobre una partícula
En el caso particular de que la fuerza aplicada a la partícula sea constante (en módulo, dirección3 y sentido4 ), se tiene que
W_{\text{AB}}=\int_{\text{A}}^{\text{B}} \mathbf F \cdot \mathrm d \mathbf r =
\mathbf F \cdot \int_{\text{A}}^{\text{B}} \mathrm d \mathbf r =\mathbf F \cdot \Delta \mathbf r =
F s \cos \theta
es decir, el trabajo realizado por una fuerza constante viene expresado por el producto escalar de la fuerza por el vector desplazamiento total entre la posición inicial y la final. Cuando el vector fuerza es perpendicular al vector desplazamiento del cuerpo sobre el que se aplica, dicha fuerza no realiza trabajo alguno. Asimismo, si no hay desplazamiento, el trabajo también será nulo.
Si sobre una partícula actúan varias fuerzas y queremos calcular el trabajo total realizado sobre esta ella, entonces  \mathbf F  representará al vector resultante de todas las fuerzas aplicadas.
Trabajo sobre un sólido rígido
Para el caso de un sólido el trabajo total sobre el mismo se calcula sumando las contribuciones sobre todas las partículas. Matemáticamente ese trabajo puede expresarse como integral:
W = \int_V  \mathrm{d}V \int_{T_0}^{T_f} \mathbf{f}_V(\mathbf{x})\cdot \mathbf{v}(\mathbf{x}) \mathrm{d}t
Si se trata de un sólido rígido las fuerzas de volumen \scriptstyle \mathbf{f}_V puede escribirse en términos de la fuerza resultante \scriptstyle \mathbf{F}_R, el momento resultante \scriptstyle \mathbf{M}_R, la velocidad del centro de masas \scriptstyle \mathbf{V}_{CM} y la velocidad angular \scriptstyle \boldsymbol{\omega}:
W = \int_{T_0}^{T_f} \left( \mathbf{F}_R \cdot \mathbf{v}_{CM} +
\mathbf{M}_R\cdot \boldsymbol{\omega} \right)\mathrm{d}t

Trabajo y energía cinética[editar]

Para el caso de una partícula tanto en mecánica clásica como en mecánica relativista es válida la siguiente expresión:
\mathbf{F} = \frac{\mathrm{d}\mathbf{p}}{\mathrm{d}t}
Multiplicando esta expresión escalarmente por la velocidad e integrando respecto al tiempo se obtiene que el trabajo realizado sobre una partícula (clásica o relativista) iguala a la variación de energía cinética:
W = \int \mathbf{F}\cdot\mathbf{v} \mathrm{d}t
= \int \mathbf{F}\cdot \mathrm{d}\mathbf{r}
= \int \mathbf{v}\cdot\mathrm{d}\mathbf{p} =  \Delta E_c

El trabajo en termodinámica[editar]

En el caso de un sistema termodinámico, el trabajo no es necesariamente de naturaleza puramente mecánica, ya que la energía intercambiada en las interacciones puede ser también calorífica, eléctrica, magnética o química, por lo que no siempre podrá expresarse en la forma de trabajo mecánico.
No obstante, existe una situación particularmente simple e importante en la que el trabajo está asociado a los cambios de volumen que experimenta un sistema (v.g., un fluido contenido en un recinto de forma variable).
Así, si consideramos un fluido que se encuentra sometido a una presión externa p_{\text{ext}}\, y que evoluciona desde un estado caracterizado por un volumen V_1 a otro con un volumenV_2, el trabajo realizado será:
W_{12} = \int_{V_1}^{V_2} p_{\text{ext}} \mathrm d V
resultando un trabajo positivo (W > 0) si se trata de una expansión del sistema \mathrm d V > 0 y negativo en caso contrario, de acuerdo con el convenio de signos aceptado en la Termodinámica. En un proceso cuasiestático y sin fricción la presión exterior (p_{\text{ext}}) será igual en cada instante a la presión (p) del fluido, de modo que el trabajo intercambiado por el sistema en estos procesos se expresa como
W_{12} = \int_{V_1}^{V_2} p \, \mathrm d V
De estas expresiones se infiere que la presión se comporta como una fuerza generalizada, en tanto que el volumen actúa como un desplazamiento generalizado; la presión y el volumen constituyen una pareja de variables conjugadas.
En el caso que la presión del sistema permanezca constante durante el proceso, el trabajo viene dado por:
W = \int_{V_1}^{V_2} p \mathrm d V = p \int_{V_1}^{V_2} \mathrm d V = p ( V_2 - V_1 ) = p \Delta V
El trabajo en los diagramas de Clapeyron de un ciclo termodinámico.

Unidades de trabajo[editar]

Sistema Internacional de Unidades[editar]

  • Julio o joule, unidad de trabajo en el SI
  • Kilojulio: 1 kJ = 103 J

Sistema Técnico de Unidades[editar]

Sistema Cegesimal de Unidades[editar]

Sistema Anglosajón de Unidades[editar]

Sistema anglosajón[editar]

Otras unidades[editar]

Véase también[editar]

  • Energía
  • Energía cinética
  • Energía potencial
  • Fuerza
  • Teorema de la energía cinética
  • Magnitud física
  • Potencia (física)
  • Resultado de imagen para trabajo mecanicoResultado de imagen para trabajo mecanicoResultado de imagen para trabajo mecanico
  • Potencia (física)

    En físicapotencia (símbolo P)nota 1 es la cantidad de trabajo efectuado por unidad de tiempo.
    Si W es la cantidad de trabajo realizado durante un intervalo de tiempo de duración Δt, la potencia media durante ese intervalo está dada por la relación:
    \bar{P} \equiv \left\langle P\right\rangle = \frac{\ W}{\Delta t}
    La potencia instantánea es el valor límite de la potencia media cuando el intervalo de tiempo Δt se aproxima a cero. En el caso de un cuerpo de pequeñas dimensiones:
    P(t) = \lim_{\Delta t\rightarrow 0} \frac{\ W}{\Delta t}\ =
\lim_{\Delta t\rightarrow 0} \mathbf{F}\cdot\frac{\Delta\mathbf{r}}{\Delta t} =
\mathbf{F}\cdot \mathbf{v}
    Donde
    P es la potencia,
    W es el trabajo,
    t es el tiempo.
    r es el vector de posición.
    F es la fuerza.
    v es la velocidad.

    Tipos de potencia[editar]

    Potencia mecánica[editar]

    La potencia mecánica aplicada sobre un sólido rígido viene dado por el producto de la fuerza resultante aplicada por la velocidad:
    P(t) = \mathbf{F}\cdot \mathbf{v}
    Si además existe rotación del sólido y las fuerzas aplicadas están cambiando su velocidad angular:
    P(t) = \mathbf{F}\cdot \mathbf{v} + \mathbf{M}\cdot \boldsymbol{\omega}
    donde:
    \mathbf{F}, \mathbf{M}, son la fuerza resultante y el momento resultante.
    \mathbf{v}, \boldsymbol{\omega}, son la velocidad del punto donde se ha calculado la resultante efectiva y la velocidad angular del sólido.
    Para un sólido deformable o un medio continuo general la expresión es más compleja y se expresa como producto del tensor tensión y el campo de velocidades. la variación de energía cinética viene dada por:
    P = \frac{\mathrm{d}}{\mathrm{d}t} \int_V \frac{\rho}{2}\|\mathbf{v}\|^2\ \mathrm{d}V
+ \int_V \sum_{ij} T_{ij}D_{ij}\ \mathrm{d}V
    donde:
    T_{ij}, son las componentes del tensor de tensiones de Cauchy.
    D_{ij}, son las componentes del tensor de velocidad de deformación.

    Potencia eléctrica[editar]

    La potencia eléctrica P desarrollada en un cierto instante por un dispositivo viene dada por la expresión
    P(t) = I(t)V(t) \,
    Donde:
    P(t) es la potencia instantánea, medida en vatios (julios/segundos).
    I(t) es la corriente que circula por él, medida en amperios.
    V(t) es la diferencia de potencial (caída de voltaje) a través del componente, medida en voltios.
    Si el componente es una resistencia, tenemos:
    P=I^2 R = \frac{V^2}{R}
    Donde:
    R es la resistencia, medida en ohmios.

    Potencia sonora[editar]

    La potencia del sonido, considerada como la cantidad de energía que transporta la onda sonora por unidad de tiempo a través de una superficie dada, depende de laintensidad de la onda sonora y de la superficie , viniendo dada, en el caso general, por:
    P_S=\int_S I_s\ dS
    • Ps es la potencia
    • Is es la intensidad sonora.
    • dS es el elemento de superficie sobre alcanzado por la onda sonora.
    Para una fuente aislada, el cálculo de la potencia sonora total emitida requiere que la integral anterior se extienda sobre una superficie cerrada.
    Resultado de imagen para potenciaResultado de imagen para potencia

    Energía potencial

    Los carros de una montaña rusaalcanzan su máxima energía potencialgravitacional en la parte más alta del recorrido. Al descender, ésta es convertida en energía cinética, la que llega a ser máxima en el fondo de la trayectoria (y la energía potencial mínima). Luego, al volver a elevarse debido a la inercia del movimiento, el traspaso de energías se invierte. Si se asume una fricción insignificante, la energía total del sistema permanece constante.
    En un sistema físico, la energía potencial es la energía que mide la capacidad que tiene dicho sistema para realizar un trabajo en función exclusivamente de su posición o configuración. Puede pensarse como la energía almacenada en el sistema, o como una medida del trabajo que un sistema puede entregar. Suele abreviarse con la letra \scriptstyle U o \scriptstyle E_p.
    Más rigurosamente, la energía potencial es una magnitud escalar asociada a un campo de fuerzas (o como en elasticidad un campo tensorial de tensiones). Cuando la energía potencial está asociada a un campo de fuerzas, la diferencia entre los valores del campo en dos puntos A y B es igual al trabajo realizado por la fuerza para cualquier recorrido entre B y A.

    Energía potencial asociada a campos de fuerza[editar]

    La energía potencial puede definirse solamente cuando la fuerza es conservativa. Si las fuerzas que actúan sobre un cuerpo son no conservativas, entonces no se puede definir la energía potencial, como se verá a continuación. Una fuerza es conservativa cuando se cumple alguna de las siguientes propiedades:
    • El trabajo realizado por la fuerza entre dos puntos es independiente del camino recorrido.
    • El trabajo realizado por la fuerza para cualquier camino cerrado es nulo.
    • Cuando el rotacional de la fuerza es cero.
    Se puede demostrar que todas las propiedades son equivalentes (es decir, que cualquiera de ellas implica la otra). En estas condiciones, la energía potencial se define como:
    U_B - U_A = -\int_A^B \mathbf{F} \cdot d\mathbf{r} .
    Si las fuerzas no son conservativas no existirá en general una manera unívoca de definir la anterior integral. De la propiedad anterior se sigue que si la energía potencial es conocida, se puede obtener la fuerza a partir del gradiente de U:
     \mathbf{F} = - \nabla U .
    También puede recorrerse el camino inverso: suponer la existencia una función energía potencial y definir la fuerza correspondiente mediante la fórmula anterior. Se puede demostrar que toda fuerza así definida es conservativa.
    La forma funcional de la energía potencial depende de la fuerza de que se trate; así, para el campo gravitatorio (o eléctrico), el resultado del producto de las masas (o cargas) por una constante dividido por la distancia entre las masas (cargas), por lo que va disminuyendo a medida que se incrementa dicha distancia.

    Energía potencial gravitatoria[editar]

    La fuerza gravitatoria mantiene a los planetas en órbita en torno al sol.
    La energía potencial gravitatoria es la energía asociada con la fuerza gravitatoria. Esta dependerá de la altura relativa de un objeto a algún punto de referencia, la masa, y la fuerza de la gravedad.
    Por ejemplo, si un libro en una mesa es elevado, una fuerza externa estará actuando en contra de la fuerza gravitacional. Si el libro cae, el mismo trabajo que es empleado para levantarlo, será efectuado por la fuerza gravitacional.
    Por esto, un libro a un metro del piso tiene menos energía potencial que otro a dos metros, o un libro de mayor masa a la misma altura.
    Si bien la fuerza gravitacional varía con la distancia (altura), en las proximidades de la superficie de la Tierra la diferencia es muy pequeña como para ser considerada, por lo que se considera a la aceleración de la gravedad como una constante (9,8 m/s2) en cualquier parte. En cambio en la Luna, cuya gravedad es muy inferior, se generaliza el valor de 1,66 m/s2
    Para estos casos en los que la variación de la gravedad es insignificante, se aplica la fórmula:
    \ U = mgh
    Donde \ U es la energía potencial, \ m la masa\ g la aceleración de la gravedad, y \ h la altura.
    Sin embargo, si la distancia (la variación de altitud) es importante, y por tanto la variación de la aceleración de la gravedad es considerable, se aplica la fórmula general:
     U = -\frac{GMm}{r}
    Donde \scriptstyle U es la energía potencial, \scriptstyle r es la distancia entre la partícula material y el centro de la Tierra, \scriptstyle G la constante universal de la gravitación y \scriptstyle M la masa de la Tierra. Esta última es la fórmula que necesitamos emplear, por ejemplo, para estudiar el movimiento de satélites y misiles balísticos:

    Cálculo simplificado[editar]

    Cuando la distancia recorrida por un móvil, h, es pequeña, lo que sucede en la mayoría de las aplicaciones usuales (tiro parabólico, saltos de agua, etc.), podemos usar eldesarrollo de Taylor a la anterior ecuación. Así si llamamos r a la distancia al centro de la Tierra, R al radio de la Tierra y h a la altura sobre la superficie de la Tierra, es decir, r =R + h tenemos:
     U_G(R+h) = -\frac{GMm}{(R+h)}
\approx -\frac{GMm}{R} +\frac{GM}{R^2}mh =
 -\frac{GMm}{R} + mgh
    Donde hemos introducido la aceleración sobre la superficie:
     g= \frac{GM}{R^2} \approx 9,80665\ \frac{\text{m}}{\text{s}^2}
    Por tanto la variación de la energía potencial gravitatoria al desplazarse un cuerpo de masa m desde una altura h1 hasta una altura h2 es:
     \Delta U_G \approx mg(h_2-h_1)

    Dado que la energía potencial se anula cuando la distancia es infinita, frecuentemente se asigna energía potencial cero a la altura correspondiente a la del suelo, ya que lo que es de interés no es el valor absoluto de U, sino su variación durante el movimiento.
    Así, si la altura del suelo es h1 = 0, entonces la energía potencial a una altura h2 = h será simplemente UG = mgh.

    Energía potencial electrostática[editar]

    La energía potencial electrostática de un sistema formado por dos partículas de cargas q y Q situadas a una distancia r una de la otra es igual a:
     U_E(r) = K \frac{Qq}{r}
    Siendo K la constante de Coulomb, una constante universal cuyo valor aproximado es 9×109 (voltios·metro/culombio). K=1/(4\pi\epsilon) donde ε es la permitividad del medio. En el vacío ε = ε0 = 8,85x10-12 (culombio/voltio·metro)..
    Una definición de energía potencial eléctrica sería la siguiente: cantidad de trabajo que se necesita realizar para acercar una carga puntual de masa nula con velocidad constante desde el infinito hasta una distancia r de una carga del mismo signo, la cual utilizamos como referencia. En el infinito la carga de referencia ejerce una fuerza nula.
    Es importante no confundir la energía potencial electrostática con el potencial eléctrico, que es el trabajo por unidad de carga:
     V = \frac{U_E}{q}

    Energía potencial elástica[editar]

    Esta catapulta hace uso de la energía potencial elástica.
    La energía elástica o energía de deformación es el aumento de energía interna acumulada en el interior de un sólido deformable como resultado del trabajo realizado por las fuerzas que provocan la deformación.

    Potencial armónico[editar]

    El Potencial armónico (caso unidimensional), dada una partícula en un campo de fuerzas que responda a la ley de Hooke, como el caso de un muelle se puede calcular estimando el trabajo necesario para mover la partícula una distancia x:
    U_e = -\int\vec{F}\cdot d\vec{x}
    si es un muelle ideal cumpliría la ley de Hooke:
    {F = -k x}\,
    El trabajo desarrollado (y por tanto la energía potencial) que tendríamos sería:
    U_e = -\int\vec{F}\cdot d\vec{x}=-\int {-k x}\, dx = \frac {1} {2} k x^2.
    Las unidades están en julios. La k sería la constante elástica del muelle o del campo de fuerzas.

    Energía de deformación[editar]

    La energía de deformación (caso lineal): en este caso la función escalar que da el campo de tensiones es la energía libre de Helmholtz por unidad de volumen, f, que representa la energía de deformación. Para un sólido elástico lineal e isótropo, la energía potencial elástica en función de las deformaciones εij y la temperatura la energía libre de un cuerpo deformado viene dada por:
    (1)\begin{cases} f(\epsilon_{ij},T) = \lambda(T) \left(\sum_{i=1}^{3}\epsilon_{ii}\right)^2 + 2\mu(T) \sum_{i=1}^{3} \sum_{j=1}^{3} \epsilon_{ij}^2 \\
f(\epsilon_{ij},T) =\lambda(T) \left(\epsilon_{xx}+\epsilon_{yy} +\epsilon_{zz}\right)^2+ 2\mu(T) \left(\epsilon_{xx}+\epsilon_{xy}+ ... +\epsilon_{zy}+\epsilon_{zz}\right)^2 \end{cases}
    Donde \lambda(T), \mu(T) \, son constantes elásticas llamadas coeficientes de Lamé, que pueden depender de la temperatura, y están relacionadas con el módulo de Young y elcoeficiente de Poisson mediante las relaciones algebraicas:
     \lambda=\frac{\nu E}{(1+\nu)(1-2\nu)} \qquad \mu=\frac{E}{2(1+\nu)}
    A partir de esta expresión (1) del potencial termodinámico de energía libre pueden obtenerse las tensiones a partir de las siguientes relaciones termodinámicas:
     \sigma_{ij} = \left ( \frac{\partial f}{\partial \epsilon_{ij}} \right)_S = \frac{\nu E}{(1+\nu)(1-2\nu)}\left(\sum_{k=1}^{3}\epsilon_{kk}\right)+\frac{E}{(1+\nu)} \epsilon_{ij}
    Estas últimas ecuaciones se llaman ecuaciones de Lamé-Hooke y escritas más explícitamente en forma matricial tienen la forma:
    
\begin{pmatrix}
  \sigma_{xx}\\
  \sigma_{yy}\\  
  \sigma_{zz}\\
  \sigma_{xy}\\
  \sigma_{xz}\\  
  \sigma_{yz}
\end{pmatrix}
 =
\frac{E}{1+\nu}
\begin{pmatrix}
  1+\alpha & \alpha & \alpha & & & \\
  \alpha & 1+\alpha & \alpha & & & \\
  \alpha & \alpha & 1+\alpha & & & \\
  & & & \frac{1}{2} & 0 & 0 \\
  & & & 0 & \frac{1}{2} & 0 \\
  & & & 0 & 0 & \frac{1}{2} \\
\end{pmatrix}
\begin{pmatrix}
  \varepsilon_{xx}\\
  \varepsilon_{yy}\\  
  \varepsilon_{zz}\\
  \varepsilon_{xy}\\
  \varepsilon_{xz}\\  
  \varepsilon_{yz}
\end{pmatrix}
    Donde
     \alpha:=\frac{\nu}{1-2\nu}
    • Energía de deformación (caso no lineal general), en el caso de materiales elásticos no lineales la energía de deformación puede definirse sólo en el caso de materiales hiperelásticos. Y en ese caso la energía elástica está estrechamente relacionada con el potencial hiperelástico a partir de la cual se deduce la ecuación constitutiva.

    Véase también[editar]

    • Masa gravitacional
    • Energía cinética
    • Energía mecánica
    • Energía internaResultado de imagen para energia potencialResultado de imagen para energia potencial
    • Energía cinética

      Los carros de una montaña rusaalcanzan su máxima energía cinética cuando están en el fondo de su trayectoria. Cuando comienzan a elevarse, la energía cinética comienza a ser convertida a energía potencial gravitacional, pero, si se asume una fricción insignificante y otros factores de retardo, la cantidad total de energía en el sistema sigue siendo constante.
      En física, la energía cinética de un cuerpo es aquella energía que posee debido a su movimiento. Se define como el trabajonecesario para acelerar un cuerpo de una masa determinada desde el reposo hasta la velocidad indicada. Una vez conseguida esta energía durante la aceleración, el cuerpo mantiene su energía cinética salvo que cambie su velocidad. Para que el cuerpo regrese a su estado de reposo se requiere un trabajo negativo de la misma magnitud que su energía cinética. Suele abreviarse con letra Ec oEk (a veces también T o K).Existen varias formas de energía como la energía química, el calor, la radiación electromagnética, la energía nuclear, las energías gravitacional, eléctrica, elástica, etc, todas ellas pueden ser agrupadas en dos tipos: la energía potencial y la energía cinética.
      La energía cinética puede ser entendida mejor con ejemplos que demuestren cómo ésta se transforma de otros tipos de energía y a otros tipos de energía. Por ejemplo un ciclista quiere usar la energía química que le proporcionó su comida para acelerar su bicicleta a una velocidad elegida. Su velocidad puede mantenerse sin mucho trabajo, excepto por la resistencia del aire y la fricción. La energía química es convertida en una energía de movimiento, conocida como energía cinética, pero el proceso no es completamente eficiente y el ciclista también produce calor.
      La energía cinética en movimiento de la bicicleta y el ciclista pueden convertirse en otras formas. Por ejemplo, el ciclista puede encontrar una cuesta lo suficientemente alta para subir, así que debe cargar la bicicleta hasta la cima. La energía cinética hasta ahora usada se habrá convertido en energía potencial gravitatoria que puede liberarse lanzándose cuesta abajo por el otro lado de la colina. Alternativamente el ciclista puede conectar una dínamo a una de sus ruedas y así generar energía eléctrica en el descenso. La bicicleta podría estar viajando más despacio en el final de la colina porque mucha de esa energía ha sido desviada en hacer energía eléctrica. Otra posibilidad podría ser que el ciclista aplique sus frenos y en ese caso la energía cinética se estaría disipando a través de la fricción en energía calórica.
      Como cualquier magnitud física que sea función de la velocidad, la energía cinética de un objeto no solo depende de la naturaleza interna de ese objeto, también depende de la relación entre el objeto y el observador (en física un observador es formalmente definido por una clase particular de sistema de coordenadas llamado sistema inercial de referencia). Magnitudes físicas como ésta son llamadas invariantes. La energía cinética esta co-localizada con el objeto y atribuido a ese campo gravitacional.
      El cálculo de la energía cinética se realiza de diferentes formas según se use la mecánica clásica, la mecánica relativista o la mecánica cuántica. El modo correcto de calcular la energía cinética de un sistema depende de su tamaño, y la velocidad de las partículas que lo forman. Así, si el objeto se mueve a una velocidad mucho más baja que la velocidad de la luz, la mecánica clásica de Newton será suficiente para los cálculos; pero si la velocidad es cercana a la velocidad de la luz, la teoría de la relatividad empieza a mostrar diferencias significativas en el resultado y debería ser usada. Si el tamaño del objeto es más pequeño, es decir, de nivel subatómico, la mecánica cuántica es más apropiada.

      Energía cinética en mecánica clásica[editar]

      Energía cinética en diferentes sistemas de referencia[editar]

      Como hemos dicho, en la mecánica clásica, la energía cinética de una masa puntual depende de su masa m y sus componentes del movimiento. Se expresa en julios (J). 1 J = 1 kg·m2/s2. Estos son descritos por la velocidad v de la masa puntual, así: E_c = \frac{1}{2} m v^2.
      En un sistema de coordenadas especial, esta expresión tiene las siguientes formas:
      E_c={1 \over 2} m (\dot x^2+\dot y^2+\dot z^2)
      E_c=\frac{1}{2}m \left(\dot r^2 + r^2 \dot \varphi^2 \right)
      E_c=\frac{1}{2}m \left(\dot r^2 + r^2 \dot \varphi^2 + \dot z^2 \right)
      E_c=\frac{1}{2}m \left(r^2 \left[\dot \theta^2 + \dot \varphi^2 \sin^2\theta \right] + \dot r^2 \right)
      Con eso el significado de un punto en una coordenada y su cambio temporal se describe como la derivada temporal de su desplazamiento:
      \dot x = \frac{\mathrm{d}x}{\mathrm{d}t}= \frac{\mathrm{d}}{\mathrm{d}t} x(t)
      En un formalismo hamiltoniano no se trabaja con esas componentes del movimiento, o sea con su velocidad, sino con su impulso p (cambio en la cantidad de movimiento). En caso de usar componentes cartesianas obtenemos:
      E_c = \frac{p_x^2+p_y^2+p_z^2}{2m}

      Energía cinética de sistemas de partículas[editar]

      Para una partícula, o para un sólido rígido que no este rotando, la energía cinética cae a cero cuando el cuerpo para. Sin embargo, para sistemas que contienen muchos cuerpos con movimientos independientes, que ejercen fuerzas entre ellos y que pueden (o no) estar rotando, esto no es del todo cierto. Esta energía es llamada 'energía interna'. La energía cinética de un sistema en cualquier instante de tiempo es la suma simple de las energías cinéticas de las masas, incluyendo la energía cinética de la rotación.
      Un ejemplo de esto puede ser el Sistema Solar. En el centro de masas del sistema solar, el Sol está (casi) estacionario, pero los planetas y planetoides están en movimiento sobre él. Así en un centro de masas estacionario, la energía cinética está aún presente. Sin embargo, recalcular la energía de diferentes marcos puede ser tedioso, pero hay un truco. La energía cinética de un sistema de diferentes marcos inerciales puede calcularse como la simple suma de la energía en un marco con centro de masas y añadir en la energía el total de las masas de los cuerpos que se mueven con velocidad relativa entre los dos marcos.
      Esto se puede demostrar fácilmente: sea V la velocidad relativa en un sistema k de un centro de masas i:
      E_c = \int \frac{\mathbf{v}^2}{2}dm = \int \frac{(\bar{\mathbf{v}}+\mathbf{V})^2}{2}dm =
\underbrace{\int \frac{\bar{\mathbf{v}}^2}{2}dm}_{E_{c,int}}
+ \underbrace{\mathbf{V}\int \bar{\mathbf{v}} dm}_{\mathbf{V}\cdot\mathbf{P} = 0}
+ \underbrace{\frac{V^2}{2} \int dm}_{E_{c,CM}}
      Donde:
      E_{c,int}\,, es la energía cinética interna respecto al centro de masas de ese sistema
      \mathbf{P} es el momento respecto al centro de masas, que resulta ser cero por la definición de centro de masas.
      M\,, es la masa total.
      Por lo que la expresión anterior puede escribirse simplemente como:1
       E_c = \overbrace{E_{c,int}}^{E_{rot}} + M \frac{V^2}{2} =
E_{rot} + E_{tras}
      Donde puede verse más claramente que energía cinética total de un sistema puede descomponerse en su energía cinética de traslación y la energía de rotación alrededor del centro de masas. La energía cinética de un sistema entonces depende del Sistema de referencia inercial y es más bajo con respecto al centro de masas referencial, por ejemplo, en un sistema de referencia en que el centro de masas sea estacionario. En cualquier otro sistema de referencia hay una energía cinética adicional correspondiente a la masa total que se mueve a la velocidad del centro de masas.

      Energía cinética de un sólido rígido en rotación[editar]

      Para un sólido rígido que está rotando puede descomponerse la energía cinética total como dos sumas: la energía cinética de traslación (que es la asociada al desplazamiento del centro de masa del cuerpo a través del espacio) y la energía cinética de rotación (que es la asociada al movimiento de rotación con cierta velocidad angular). La expresión matemática para la energía cinética es:
      E_c = E_{tra} + E_{rot} =\frac{1}{2} m \| \vec{v} \|^2 + \frac{1}{2} \vec{\omega}^{t} \cdot (\mathbf{I} \vec{\omega})
      Donde:
      E_{tra}\; Energía de traslación.
      E_{rot}\; Energía de rotación.
      m \, Masa del cuerpo.
      \mathbf{I} tensor de (momentos de) inercia.
      \vec{\omega} =  velocidad angular del cuerpo.
      \vec{\omega}^{t} =  traspuesta del vector de la velocidad angular del cuerpo.
      \vec{v} =  velocidad lineal del cuerpo.
      El valor de la energía cinética es positivo, y depende del sistema de referencia que se considere al determinar el valor (módulo) de la velocidad \vec{v} y \vec{\omega}. La expresión anterior puede deducirse de la expresión general:
      E_c = \int_M \frac{\| \vec{v} \|^2}{2} dm

      Energía cinética en mecánica relativista[editar]

      Energía cinética de una partícula[editar]

      Si la velocidad de un cuerpo es una fracción significante de la velocidad de la luz, es necesario utilizar mecánica relativista para poder calcular la energía cinética. Enrelatividad especial, debemos cambiar la expresión para el momento lineal y de ella por interacción se puede deducir la expresión de la energía cinética:
      E_c = m \gamma c^2 - m c^2 = \frac{m c^2}{\sqrt{1 - v^2/c^2}} - m c^2
      Tomando la expresión relativista anterior, desarrollándola en serie de Taylor y tomando únicamente el término (1/2)m(v^2/c^2) se recupera la expresión de la energía cinética típica de la mecánica newtoniana:2
       E_c =  \frac{mc^2}{\sqrt{1-\frac{v^2}{c^2}}}-mc^2=
mc^2\left [\frac{1}{2}\left(\frac{v^2}{c^2}\right)+
\frac{3}{8}\left(\frac{v^2}{c^2}\right)^2+...\right] = \frac{1}{2}mv^2
      Se toma únicamente el primer término de la serie de Taylor ya que, conforme la serie progresa, los términos se vuelven cada vez más y más pequeños y es posible despreciarlos.
      La ecuación relativista muestra que la energía de un objeto se acerca al infinito cuando la velocidad v se acerca a la velocidad de la luz c, entonces es imposible acelerar un objeto a esas magnitudes. Este producto matemático es la fórmula de equivalencia entre masa y energía, cuando el cuerpo está en reposo obtenemos esta ecuación:
      E_0 = m c^2 \!
      Así, la energía total E puede particionarse entre las energías de las masas en reposo más la tradicional energía cinética newtoniana de baja velocidad. Cuando los objetos se mueven a velocidades mucho más bajas que la luz (ej. cualquier fenómeno en la tierra) los primeros dos términos de la serie predominan.
      La relación entre energía cinética y momentum es más complicada en este caso y viene dada por la ecuación:
      E_c = \sqrt{p^2 c^2 + m^2 c^4} - m c^2
      Esto también puede expandirse como una serie de Taylor, el primer término de esta simple expresión viene de la mecánica newtoniana. Lo que sugiere esto es que las fórmulas para la energía y el momento no son especiales ni axiomáticas pero algunos conceptos emergen de las ecuaciones de masa con energía y de los principios de la relatividad.

      Energía cinética de un sólido en rotación[editar]

      A diferencia del caso clásico la energía cinética de rotación en mecánica relativista no puede ser representada simplemente por un tensor de inercia y una expresión cuadrática a partir de él en el que intervenga la velocidad angular. El caso simple de una esfera en rotación ilustra este punto; si suponemos una esfera de un material suficientemente rígido para que podamos despreciar las deformaciones por culpa de la rotación (y por tanto los cambios de densidad) y tal que su velocidad angular satisfaga la condición \scriptstyle \omega R < cse puede calcular la energía cinética \scriptstyle E_c a partir de la siguiente integral:
      E_c + m_0c^2 = \int_S \frac{c^2 dm}{\sqrt{1-\frac{v^2}{c^2}}} =
2\pi \int_{r=0}^{r=R} \int_{\theta = 0}^{\theta = \pi}
\frac{\rho c^2}{\sqrt{1-\frac{r^2\omega^2}{c^2}}} r^2\sin \theta drd\theta
      Integrando la expresión anterior se obtiene la expresión:
      E_c = \frac{3}{2}m_0c^2 \left(\frac{c}{R\omega}\right)^2
\left[ 1 + \frac{1}{2} \left(\frac{R\omega}{c}-\frac{c}{R\omega}\right)
\ln \left(\frac{c+R\omega}{c-R\omega} \right) \right]
- m_0c^2
      Comparación entre la expresión para la energía cinética de una esfera de acuerdo con la mecánica clásica y la mecánica relativista (aquí R es el radio, ω la velocidad angular y m0 la masa en reposo de la esfera.
      Ads by GoSaveAd Options
      Para una esfera en rotación los puntos sobre el eje no tienen velocidad de traslación mientras que los puntos más alejados del eje de giro tienen una velocidad \scriptstyle \omega R, a medida que esta velocidad se aproxima a la velocidad de la luz la energía cinética de la esfera tiende a crecer sin límite. Esto contrasta con la expresión clásica que se da a continuación:
      E_c = \frac{1}{2}I \omega^2 = \frac{1}{2} \left(\frac{2}{5} m_0R^2\right) \omega^2
      Paradójicamente, dentro de la teoría especial de la relatividad, el supuesto de que es posible construir un sistema rotar progresivamente más rápido un esfera sobre su eje, lleva a que los puntos más alejados del eje de giro alcancen la velocidad de la luz aplicando al cuerpo una cantidad finita de energía (E_c = mR^2\omega^2/2). Lo cual revela que el supuesto no puede ser correcto cuando algunos puntos de la periferia del sólido están moviéndose a velocidades cercanas a la de la luz.

      Energía cinética en mecánica cuántica[editar]

      En la mecánica cuántica, el valor que se espera de energía cinética de un electrón\langle\hat{T}\rangle, para un sistema de electrones describe una función de onda \vert\psi\rangle que es la suma de un electrón, el operador se espera que alcance el valor de:
      \langle\hat{T}\rangle = -\frac{\hbar^2}{2 m_e}\bigg\langle\psi \bigg\vert \sum_{i=1}^N \nabla^2_i \bigg\vert \psi \bigg\rangle
      donde m_e es la masa de un electrón y \nabla^2_i es el operador laplaciano que actúa en las coordenadas del electrón iésimo y la suma de todos los otros electrones. Note que es una versión cuantizada de una expresión no relativista de energía cinética en términos de momento:
      E_c = \frac{p^2}{2m}
      El formalismo de la funcional de densidad en mecánica cuántica requiere un conocimiento sobre la densidad electrónica, para esto formalmente no se requiere conocimientos de la función de onda.
      Dado una densidad electrónica \rho(\mathbf{r}), la funcional exacta de la energía cinética del n-ésimo electrón es incierta; sin embargo, en un caso específico de un sistema de un electrón, la energía cinética puede escribirse así:
       T[\rho]  =  \frac{1}{8} \int \frac{ \nabla \rho(\mathbf{r}) \cdot \nabla \rho(\mathbf{r}) }{ \rho(\mathbf{r}) } d^3r
      donde T[\rho] es conocida como la funcional de la energía cinética de Von Weizsacker.

      Energía cinética de partículas en la mecánica cuántica[editar]

      En la teoría cuántica una magnitud física como la energía cinética debe venir representada por un operador autoadjunto en un espacio de Hilbert adecuado. Ese operador puede construirse por un proceso de cuantización, el cual conduce para una partícula moviéndose por el espacio euclidiano tridimensional a una representación natural de ese operador sobre el espacio de Hilbert L^2(\R) dado por:
       \hat{E}_c = -\hbar^2 \left(\frac{\partial^2}{\partial x^2}+ \frac{\partial^2}{\partial y^2}+ \frac{\partial^2}{\partial z^2}\right)
      que, sobre un dominio denso de dicho espacio formado clases de equivalencia representables por funciones C², define un operador autoadjunto con autovalores siempre positivos, lo cual hace que sean interpretables como valores físicamente medibles de la energía cinética.

      Energía cinética del sólido rígido en la mecánica cuántica[editar]

      Un sólido rígido a pesar de estar formado por un número infinito de partículas, es un sistema mecánico con un número finito de grados de libertad lo cual hace que su equivalente cuántico pueda ser representado por sobre un espacio de Hilbert de dimensión infinita de tipo L² sobre un espacio de configuración de inútiles dimensión finita. En este caso el espacio de configuración de un sólido rígido es precisamente el grupo de Lie SO(3) y por tanto el espacio de Hilbert pertinente y el operador energía cinética de rotación pueden representarse por:
      
\mathcal{H} = L^2(SO(3),\mu_h) \qquad \hat{E}_{rot}= \left(\frac{\hat{L}_x^2}{2I_1} + \frac{\hat{L}_y^2}{2I_2} + \frac{\hat{L}_z^2}{2I_3} \right)
      donde \mu_h es la medida de Haar invariante de SO(3), \hat{L}_i son los operadores del momento angular en la representación adecuada y los escalares I_i son los momentos de inercia principales.

      Energía cinética y temperatura[editar]

      A nivel microscópico la energía cinética promedio de las moléculas de un gas define su temperatura. De acuerdo con la ley de Maxwell-Boltzmann para un gas ideal clásico la relación entre la temperatura absoluta (T) de un gas y su energía cinética media es:
      T =\frac{2}{3\kappa_B}\langle E_k \rangle = \frac{m}{3\kappa_B}\langle v^2 \rangle

      donde \kappa_B es la constante de Boltzmannm\; es la masa de cada una de las moléculas del 
    • gas.