viernes, 2 de octubre de 2015

Elasticidad
En física el término elasticidad designa la propiedad mecánica de ciertos materiales de sufrir deformaciones reversibles cuando se encuentran sujetos a la acción de fuerzas exteriores y de recuperar la forma original si estas fuerzas exteriores se eliminan.
La elasticidad es estudiada por la teoría de la elasticidad, que a su vez es parte de la mecánica de sólidos deformables. La teoría de la elasticidad (TE) como la mecánica de sólidos (MS) deformables describe cómo un sólido (o fluido totalmente confinado) se mueve y deforma como respuesta a fuerzas exteriores. La diferencia entre la TE y la MS es que la primera solo trata sólidos en que las deformaciones son termodinámicamente reversibles y en los que el estado tensiones   en un punto   en un instante dado dependen solo de las deformaciones   en el mismo punto y no de las deformaciones anteriores (ni el valor de otras magnitudes en un instante anterior). Para un sólido elástico la ecuación constitutiva funcionalmente es de la forma:
donde   denota el conjunto de tensores simétricos de segundo orden del espacio euclídeo. Si el sólido es homogéneo el valor de la función anterior no dependerá del segundo argumento.
La propiedad elástica de los materiales está relacionada, como se ha mencionado, con la capacidad de un sólido de sufrir transformaciones termodinámicas reversibles e independencia de la velocidad de deformación (los sólidos viscoelásticos y los fluidos, por ejemplo, presentan tensiones dependientes de la velocidad de deformación). Cuando sobre un sólido deformable actúan fuerzas exteriores y éste se deforma se produce un trabajo de estas fuerzas que se almacena en el cuerpo en forma de energía potencial elástica y por tanto se producirá un aumento de la energía interna. El sólido se comportará elásticamente si este incremento de energía puede realizarse de forma reversible, en este caso se dice que el sólido es elástico.
Elasticidad lineal
Un caso particular de sólido elástico se presenta cuando las tensiones y las deformaciones están relacionadas linealmente, mediante la siguiente ecuación constitutiva:
Cuando eso sucede se dice que el sólido es elástico lineal. La teoría de la elasticidad lineal es el estudio de sólidos elásticos lineales sometidos a pequeñas deformaciones de tal manera que además los desplazamientos y deformaciones sean "lineales", es decir, que las componentes del campo de desplazamientos u sean muy aproximadamente una combinación lineal de las componentes del tensor deformación del sólido. En general un sólido elástico lineal sometido a grandes desplazamientos no cumplirá esta condición. Por tanto la teoría de la elasticidad lineal solo es aplicable a:
  • Sólidos elásticos lineales, en los que tensiones y deformaciones estén relacionadas linealmente (linealidad material).
  • Deformaciones pequeñas, es el caso en que deformaciones y desplazamientos están relacionados linealmente. En este caso puede usarse el tensor deformación lineal de Green-Lagrange para representar el estado de deformación de un sólido (linealidad geométrica).
Debido a los pequeños desplazamientos y deformaciones a los que son sometidos los cuerpos, se usan las siguientes simplificaciones y aproximaciones para sistemas estables:
  • Las tensiones se relacionan con las superficies no deformadas
  • Las condiciones de equilibrio se presentan para el sistema no deformado
Para determinar la estabilidad de un sistema hay presentar las condiciones de equilibrio para el sistema deformado.

Tensión

Componentes del tensor tensión en un punto P de un sólido deformable.
La tensión en un punto se define como el límite de la fuerza aplicada sobre una pequeña región sobre un plano π que contenga al punto dividida del área de la región, es decir, la tensión es la fuerza aplicada por unidad de superficie y depende del punto elegido, del estado tensional de sólido y de la orientación del plano escogido para calcular el límite. Puede probarse que la normal al plano escogido nπ y la tensión tπ en un punto están relacionadas por:
Donde T es el llamado tensor tensión, también llamado tensor de tensiones, que fijada una base vectorial ortogonal viene representado por una matriz simétrica 3x3:
Donde la primera matriz es la forma común de escribir el tensor tensión en física y la segunda forma usa las convenciones comunes en ingeniería. Dada una región en forma deortoedro con caras paralelas a los ejes coordenados situado en el interior un sólido elástico tensionado las componentes σxx, σyy y σzz dan cuenta de cambios de longitud en las tres direcciones, pero que no distorsinan los ángulos del ortoedro, mientras que las componentes σxy, σyz y σzx están relacionadas con la distorsión angular que convertiría el ortoedro en un paralelepípedo.

Deformación[]

En teoría lineal de la elasticidad dada la pequeñez de las deformaciones es una condición necesaria para poder asegurar que existe una relación lineal entre los desplazamientos y la deformación. Bajo esas condiciones la deformación puede representarse adecuadamente mediante el tensor deformación infinitesimal o tensor de pequeñas deformaciones (este tensor solo es válido para algunas situaciones, siendo este un caso particular de los tensores de Cauchy-Almansy y Green-Saint-Venant) que viene dada por:
Los componentes de la diagonal principal contienen los alargamientos (dilataciones), mientras que el resto de los componentes del tensor son los medios desplazamientos. Las componentes están linealmente relacionadas con los desplazmientos mediante esta relación:

Ecuaciones constitutivas de Lamé-Hooke[editar]

Las ecuaciones de Lamé-Hooke son las ecuaciones constitutivas de un sólido elástico lineal, homogéneo e isótropo, tienen la forma:

En el caso de un problema unidimensional, σ = σ11, ε = ε11C11 = E y la ecuación anterior se reduce a:

Donde E es el módulo de elasticidad longitudinal o módulo de Young y G el módulo de elasticidad transversal. Para caracterizar el comportamiento de un sólido elástico lineal e isótropo se requieren además del módulo de Young otra constante elástica, llamada coeficiente de Poisson (ν) y el coeficiente de temperatura (α). Por otro lado, las ecuaciones de Lamé para un sólido elástico lineal e isótropo pueden ser deducidas del teorema de Rivlin-Ericksen, que pueden escribirse en la forma:
Ciertos materiales muestran un comportamiento solo aproximadamente elástico, mostrando por ejemplo variación de la deformación con el tiempo o fluencia lenta. Estas deformaciones pueden ser permanentes o tras descargar el cuerpo pueden desaparecer (parcial o completamente) con el tiempo (viscoplasticidad, viscoelasticidad). Además algunos materiales pueden presentar plasticidad es decir pueden llegar a exhibir pequeñas deformaciones permanentes, por lo que las ecuaciones anteriores en muchos casos tampoco constituyen una buena aproximación al comportamiento de estos materiales.

Estados de la materia


La materia se presenta en tres estados o formas de agregaciónsólidolíquido y gaseoso.
Dadas las condiciones existentes en la superficie terrestre, sólo algunas sustancias pueden hallarse de modo natural en los tres estados, tal es el caso del agua.
La mayoría de sustancias se presentan en un estado concreto. Así, los metales o las sustancias que constituyen los minerales se encuentran en estado sólido y el oxígeno o el CO2 en estado gaseoso:
  • Los sólidos: Tienen forma y volumen constantes. Se caracterizan por la rigidez y regularidad de sus estructuras.
  • Los líquidos: No tienen forma fija pero sí volumen. La variabilidad de forma y el presentar unas propiedades muy específicas son características de los líquidos.
  • Los gases: No tienen forma ni volumen fijos. En ellos es muy característica la gran variación de volumen que experimentan al cambiar las condiciones de temperatura y presión.

Estado de agregación de la materia

En física y química se observa que, para cualquier sustancia o mezcla, modificando sus condiciones de temperatura o presión, pueden obtenerse distintos estados o fases, denominados estados de agregación de la materia, en relación con las fuerzas de unión de las partículas (moléculas, átomos o iones) que la constituyen.
Todos los estados de agregación poseen propiedades y características diferentes; los más conocidos y observables cotidianamenteson cuatro, llamados fases sólidalíquidagaseosa y plasmática. También son posibles otros estados que no se producen de forma natural en nuestro entorno, por ejemplo: condensado de Bose-Einsteincondensado fermiónico y estrellas de neutrones. Se cree que también son posibles otros, como el plasma de quark-gluón.1
Estado sólido
Artículo principal: Sólido
Los objetos en estado sólido se presentan como cuerpos de forma definida; sus átomos a menudo se entrelazan formando estructuras estrechas definidas, lo que les confiere la capacidad de soportar fuerzas sin deformación aparente. Son calificados generalmente como duros y resistentes, y en ellos las fuerzas de atracción son mayores que las de repulsión. En los sólidos cristalinos, la presencia de espacios intermoleculares pequeños da paso a la intervención de las fuerzas de enlace, que ubican a las celdillas en formas geométricas. En los amorfos o vítreos, por el contrario, las partículas que los constituyen carecen de una estructura ordenada.
Las sustancias en estado sólido suelen presentar algunas de las siguientes características:
  • Cohesión elevada;
  • Tienen una forma definida y memoria de forma, presentando fuerzas elásticas restitutivas si se deforman fuera de su configuración original;
  • A efectos prácticos son incompresibles,
  • Resistencia a la fragmentación;
  • Fluidez muy baja o nula;
  • Algunos de ellos se subliman.
Estado líquido
Artículo principal: Líquido
Si se incrementa la temperatura de un sólido, este va perdiendo forma hasta desaparecer la estructura cristalina, alcanzando el estado líquido. Característica principal: la capacidad de fluir y adaptarse a la forma del recipiente que lo contiene. En este caso, aún existe cierta unión entre los átomos del cuerpo, aunque mucho menos intensa que en los sólidos. El estado líquido presenta las siguientes características:
  • Cohesión menor.
  • Movimiento energía cinética.
  • Son fluidos, no poseen forma definida, ni memoria de forma por lo que toman la forma de la superficie o el recipiente que lo contiene.
  • En el frío se contrae (exceptuando el agua).
  • Posee fluidez a través de pequeños orificios.
  • Puede presentar difusión.
  • Son poco compresibles.
Estado gaseoso[editar]
Artículo principal: Gas
Se denomina gas al estado de agregación de la materia que no tiene forma ni volumen definido. Su principal composición son moléculas no unidas, expandidas y con poca fuerza de atracción, haciendo que no tengan volumen y forma definida, provocando que este se expanda para ocupar todo el volumen del recipiente que la contiene, con respecto a los gases las fuerzas gravitatorias y de atracción entre partículas resultan insignificantes. Es considerado en algunos diccionarios como sinónimo de vapor, aunque no hay que confundir sus conceptos, ya que el término de vapor se refiere estrictamente para aquel gas que se puede condensar por presurización a temperatura constante. Los gases se expanden libremente hasta llenar el recipiente que los contiene, y su densidad es mucho menor que la de los líquidos y sólidos.
Dependiendo de sus contenidos de energía o de las fuerzas que actúan, la materia puede estar en un estado o en otro diferente: se ha hablado durante la historia, de un gas ideal o de un sólido cristalino perfecto, pero ambos son modelos límites ideales y, por tanto, no tienen existencia real.
En los gases reales no existe un desorden total y absoluto, aunque sí un desorden más o menos grande.
En un gas, las moléculas están en estado de caos y muestran poca respuesta a la gravedad. Se mueven tan rápidamente que se liberan unas de otras. Ocupan entonces un volumen mucho mayor que en los otros estados porque dejan espacios libres intermedios y están enormemente separadas unas de otras. Por eso es tan fácil comprimir un gas, lo que significa, en este caso, disminuir la distancia entre moléculas. El gas carece de forma y de volumen, porque se comprende que donde tenga espacio libre allí irán sus moléculas errantes y el gas se expandirá hasta llenar por completo cualquier recipiente.
El estado gaseoso presenta las siguientes características:
  • Cohesión casi nula.
  • No tienen forma definida.
  • Su volumen es variable.
Estado plasmático
El plasma es un gas ionizado, es decir que los átomos que lo componen se han separado de algunos de sus electrones. De esta forma el plasma es un estado parecido al gas pero compuesto por aniones y cationes (iones con carga negativa y positiva, respectivamente), separados entre sí y libres, por eso es un excelente conductor. Un ejemplo muy claro es el Sol.
En la baja Atmósfera terrestre, cualquier átomo que pierde un electrón (cuando es alcanzado por una partícula cósmica rápida) se dice que está ionizado. Pero a altas temperaturas es muy diferente. Cuanto más caliente está el gas, más rápido se mueven sus moléculas y átomos, (ley de los gases ideales) y a muy altas temperaturas las colisiones entre estos átomos, moviéndose muy rápido, son suficientemente violentas para liberar los electrones. En la atmósfera solar, una gran parte de los átomos están permanentemente «ionizados» por estas colisiones y el gas se comporta como un plasma.
A diferencia de los gases fríos (por ejemplo, el aire a temperatura ambiente), los plasmas conducen la electricidad y son fuertemente influidos por los campos magnéticos. Lalámpara fluorescente, contiene plasma (su componente principal es vapor de mercurio) que calienta y agita la electricidad, mediante la línea de fuerza a la que está conectada la lámpara. La línea, positivo eléctricamente un extremo y negativo, causa que los iones positivos se aceleren hacia el extremo negativo, y que los electrones negativos vayan hacia el extremo positivo. Las partículas aceleradas ganan energía, colisionan con los átomos, expulsan electrones adicionales y mantienen el plasma, aunque se recombinen partículas. Las colisiones también hacen que los átomos emitan luz y esta forma de luz es más eficiente que las lámparas tradicionales. Los letreros de neón y las luces urbanas funcionan por un principio similar y también se usaron en electrónicas.

Presión

Para otros usos de este término, véase Presión (desambiguación).
Distribución de presiones sobre un cilindro que se mueve a velocidad constante en el seno de un fluido ideal.
Esquema; se representa cada "elemento" con una fuvolumen de un gas.
La presión (símbolo p)1 2 es una magnitud física que mide la proyección de la fuerza en dirección perpendicular por unidad de superficie, y sirve para caracterizar cómo se aplica una determinada fuerza resultante sobre una línea. En el Sistema Internacional de Unidades la presión se mide en una unidad derivada que se denomina pascal (Pa) que es equivalente a una fuerza total de unnewton (N) actuando uniformemente en un metro cuadrado (m²). En el Sistema Inglés la presión se mide en libra por pulgada cuadrada (pound per square inch o psi) que es equivalente a una fuerza total de una libra actuando en una pulgada cuadrada.










La presión es la magnitud escalar que relaciona la fuerza con la superficie sobre la cual actúa, es decir, equivale a la fuerza que actúa sobre la superficie. Cuando sobre una superficie plana de área A se aplica una fuerza normal F de manera uniforme, la presión P viene dada de la siguiente forma:
En un caso general donde la fuerza puede tener cualquier dirección y no estar distribuida uniformemente en cada punto la presión se define como:
Donde   es un vector unitario y normal a la superficie en el punto donde se pretende medir la presión. La definición anterior puede escribirse también como:
donde:
, es la fuerza por unidad de superficie.
, es el vector normal a la superficie.
, es el área total de la superficie S.

Presión absoluta y relativa[editar]

En determinadas aplicaciones la presión se mide no como la presión absoluta sino como la presión por encima de la presión atmosférica, denominándose presión relativa,presión normalpresión de gauge o presión manométrica.
Consecuentemente, la presión absoluta es la presión atmosférica (Pa) más la presión manométrica (Pm) (presión que se mide con el manómetro).
La hidrostática es la rama de la mecánica de fluidos o de la hidráulica que estudia los fluidos incompresibles en estado de equilibrio; es decir, sin que existan fuerzas que alteren su movimiento o posición, en contraposición a la dinámica de fluidos.

Características de los fluidos[editar]

Artículo principal: Fluidos
Se denomina fluido a aquél medio continuo formado por alguna sustancia entre cuyas moléculas sólo hay una fuerza de atracción débil. La propiedad definitoria es que los fluidos pueden cambiar de forma sin que aparezcan en su seno fuerzas restitutivas tendentes a recuperar la forma "original" (lo cual constituye la principal diferencia con un sólido deformable, donde sí hay fuerzas restitutivas).
Los estados de la materia líquidogaseoso y plasma son fluidos, además de algunos sólidos que presentan características propias de éstos, un fenómeno conocido como solifluxión y que lo presentan, entre otros, los glaciares y el magma.
Las caracteristicas principales que presenta todo fluido son:
  • Cohesión. Fuerza que mantiene unidas a las moléculas de una misma sustancia.
  • Tensión superficial. Fenómeno que se presenta debido a la atracción entre las moléculas de la superfíciede un líquido.
  • Adherencia. Fuerza de atracción que se manifiesta entre las moléculas de dos sustancias diferentes en contacto.
  • Capilaridad. Se presenta cuando existe contacto entre un líquido y una pared sólida, debido al fenómeno de adherencia. En caso de ser la pared un recipiente o tubo muy delgado (denominados "capilares") este fenómeno se puede apreciar con mucha claridad.

Presión de un fluido en equilibrio[editar]

En términos de mecánica clásica, la presión de un fluido incompresible en estado de equilibrio se puede expresar mediante la siguiente fórmula:
Donde P es la presión, ρ es la densidad del fluido, g es la aceleración de la gravedad y h es la altura.

Principio de Pascal[editar]

Artículo principal: Principio de Pascal
Rotura de un tonel bajo lapresión de una columna de agua.
El principio de Pascal es una ley enunciada por el físico y matemático francés Blaise Pascal (1623–1662) que se resume en la frase: «el incremento de lapresión aplicada a una superficie de un fluido incompresible (generalmente se trata de un líquido incompresible), contenido en un recipiente indeformable, se transmite con el mismo valor a cada una de las partes del mismo».
Es decir, que si se aplica presión a un líquido no comprimible en un recipiente cerrado, esta se transmite con igual intensidad en todas direcciones y sentidos. Este tipo de fenómeno se puede apreciar, por ejemplo, en la prensa hidráulica o en el gato hidráulico; ambos dispositivos se basan en este principio. La condición de que el recipiente sea indeformable es necesaria para que los cambios en la presión no actúen deformando las paredes del mismo en lugar de transmitirse a todos los puntos del líquido.

Principio de Arquímedes[editar]

Artículo principal: Principio de Arquímedes
El principio de Arquímedes establece que cualquier cuerpo sólido que se encuentre sumergido total o parcialmente en un fluido será empujado en dirección ascendente por una fuerza igual al peso del volumen del líquido desplazado por el cuerpo sólido. El objeto no necesariamente ha de estar completamente sumergido en dicho fluido, ya que si el empuje que recibe es mayor que el peso aparente del objeto, éste flotará y estará sumergido solo parcialmente.

Prensa hidráulica

La prensa hidráulica es un mecanismo conformado por vasos comunicantes impulsados por pistones de diferentes áreas que, mediante una pequeña fuerza sobre el pistón de menor área, permite obtener una fuerza mayor en el pistón de mayor área. Los pistones son llamados pistones de agua, ya que son hidráulicos. Estos hacen funcionar conjuntamente a las prensas hidráulicas por medio de motores.
Antigua prensa hidráulica.
En el siglo XVII, en Francia, el matemático y filósofo Blaise Pascal comenzó una investigación referente al principio mediante el cual la presión aplicada a un líquido contenido en un recipiente se transmite con la misma intensidad en todas direcciones.1 Gracias a este principio se pueden obtener fuerzas muy grandes utilizando otras relativamente pequeñas. Uno de los aparatos más comunes para alcanzar lo anteriormente mencionado es la prensa hidráulica, la cual está basada en elprincipio de Pascal.
El rendimiento de la prensa hidráulica guarda similitudes con el de la palanca, pues se obtienen fuerzas mayores que las ejercidas pero se aminora la velocidad y la longitud de desplazamiento, en similar proporción.2

Cálculo de la relación de fuerzas[editar]

Cuando se aplica una fuerza   sobre el émbolo de menor área   se genera una presión  :
Esquema de fuerzas y áreas de una prensa hidráulica.

Del mismo modo en el segundo émbolo:
Se observa que el líquido está comunicado, luego por el principio de Pascal, la presión en los dos pistones es la misma. Por tanto se cumple que:
Esto es:
 y la relación de fuerzas: 
Luego, la fuerza resultante de la prensa hidráulica es:
Donde:
 = fuerza del émbolo menor en N.
 = fuerza del émbolo mayor en N.
 = área del émbolo menor en .
 = área del émbolo mayor en m².

DEFINICIÓN DEPRESIÓN HIDROSTÁTICA

Se describe como presión al acto y resultado de comprimir, estrujar o apretar; a la coacción que se puede ejercer sobre un sujeto o conjunto; o la magnitud física que permite expresar el poder o fuerza que se ejerce sobre un elemento o cuerpo en una cierta unidad de superficie.
La hidrostática, por su parte, es la rama de la mecánica que se especializa en el equilibrio de los fluidos. El término también se utiliza como adjetivo para referirse a lo que pertenece o está vinculado a dicha área de la mecánica.
La presión hidrostática, por lo tanto, da cuenta de la presión o fuerza que el peso de un fluido en reposo puede llegar a provocar. Se trata de la presión que experimenta un elemento por el sólo hecho de estar sumergido en un líquido.
El fluido genera presión sobre el fondo, los laterales del recipiente y sobre la superficie del objeto introducido en él. Dicha presión hidrostática, con el fluido en estado de reposo, provoca una fuerza perpendicular a las paredes del envase o a la superficie del objeto.
El peso ejercido por el líquido sube a medida que se incrementa la profundidad. La presión hidrostática es directamente proporcional al valor de la gravedad, la densidad del líquido y la profundidad a la que se encuentra.
La presión hidrostática (p) puede ser calculada a partir de la multiplicación de la gravedad (g), la densidad (d) del líquido y la profundidad (h). En ecuación: p = d x g x h.
Este tipo de presión es muy estudiada en los distintos centros educativos para que los jóvenes puedan entenderla bien y ver cómo la misma se encuentra en su día a día. Así, por ejemplo, uno de los experimentos más utilizados por los profesores de Ciencias para explicar aquella es la que se realiza mezclando diversos fluidos.
En este caso concreto, es habitual que apuesten por introducir en un vaso o cubeta agua, aceite y alcohol. Así, en base a las densidades de cada uno de estos líquidos se consigue que el agua quede abajo del todo, el aceite sobre ella y finalmente sobre ambos se situará el alcohol. Y es que este cuenta con una mayor densidad.
Si el fluido se encuentra en movimiento, ya no ejercerá presión hidrostática, sino que pasará a hablarse de presión hidrodinámica. En este caso, estamos ante una presión termodinámica que depende de la dirección tomada a partir de un punto.
En el ámbito sanitario se habla también de lo que se conoce como presión hidrostática capilar para definir a aquella que se sustenta en el bombeo del corazón y que lo que hace es empujar la sangre a través de los vasos. Frente a ella está también la presión hidrostática intersticial que, por su parte, es la que lleva a cabo el líquido intersticial, que es aquel que se encuentra alojado en el espacio que hay entre las células.
Asimismo en este campo, también está la llamada presión osmótica capilar que es la que desarrollan las proteínas plasmáticas, empujan el agua hacia el interior del vaso en cuestión. Y finalmente nos encontramos con la presión osmótica intersticial, que también realizan aquellas proteínas pero que se define por una concentración más baja que la anterior.

Densidad

Para otros usos de este término, véase Densidad (desambiguación).
Un cilindro graduado que contiene varios líquidos de colores con diferentes densidades.
En física y química, la densidad (del latín densĭtas, -ātis) es una magnitud escalar referida a la cantidad de masa en un determinadovolumen de una sustancia. Usualmente se simboliza mediante la letra rho ρ del alfabeto griego. La densidad media es la razón entre la masa de un cuerpo y el volumen que ocupa.
Si un cuerpo no tiene una distribución uniforme de la masa en todos sus puntos la densidad alrededor de un punto puede diferir de la densidad media. Si se considera una sucesión pequeños volúmenes decrecientes   (convergiendo hacia un volumen muy pequeño) y estén centrados alrededor de un punto, siendo   la masa contenida en cada uno de los volúmenes anteriores, la densidad en el punto común a todos esos volúmenes:
La unidad es kg/ en el SI.
Como ejemplo, un objeto de plomo es más denso que otro de corcho, con independencia del tamaño y masa.
















Tipos de densidad[editar]

Densidad absoluta[editar]

La densidad o densidad absoluta es la magnitud que expresa la relación entre la masa y el volumen de una sustancia. Su unidad en el Sistema Internacional es kilogramo por metro cúbico (kg/m³), aunque frecuentemente también es expresada en g/cm³. La densidad es una magnitud intensiva.
siendo  , la densidad; m, la masa; y V, el volumen de la sustancia.

Densidad relativa[editar]

Artículo principal: Densidad relativa
La densidad del aire frente a la temperatura.
La densidad relativa de una sustancia es la relación existente entre su densidad y la de otra sustancia de referencia; en consecuencia, es una magnitud adimensional (sin unidades)
donde   es la densidad relativa,   es la densidad de la sustancia, y   es la densidad de referencia o absoluta.
Para los líquidos y los sólidos, la densidad de referencia habitual es la del agua líquida a la presión de 1 atm y la temperatura de 4 °C. En esas condiciones, la densidad absoluta del agua destilada es de 1000 kg/, es decir, 1 kg/dm³.
Para los gases, la densidad de referencia habitual es la del aire a la presión de 1 atm y la temperatura de 0 °C.

Densidad media y densidad puntual[editar]

Para un sistema homogéneo, la expresión masa/volumen puede aplicarse en cualquier región del sistema obteniendo siempre el mismo resultado.
Sin embargo, un sistema heterogéneo no presenta la misma densidad en partes diferentes. En este caso, hay que medir la "densidad media", dividiendo la masa del objeto por su volumen o la "densidad puntual" que será distinta en cada punto, posición o porción "infinitesimal" del sistema, y que vendrá definida por:
Sin embargo, debe tenerse que las hipótesis de la mecánica de medios continuos solo son válidas hasta escalas de  , ya que a escalas atómicas la densidad no está bien definida. Por ejemplo, el tamaño del núcleo atómico es cerca de   y en él se concentra la inmensa mayor parte de la masa atómica, por lo que su densidad (2,3·1017kg/m3) es muy superior a la de la materia ordinaria. Es decir, a escala atómica la densidad dista mucho de ser uniforme, ya que los átomos están esencialmente vacíos, con prácticamente toda la masa concentrada en el núcleo atómico.

Densidad aparente[editar]

La densidad aparente es una magnitud aplicada en materiales de constitución heterogénea, y entre ellos, los porosos como el suelo, los cuales forman cuerpos heterogéneos con intersticios de aire u otra sustancia, de forma que la densidad total de un volumen del material es menor que la densidad del material poroso si se compactase. En el caso de un material mezclado con aire se tiene:
La densidad aparente de un material no es una propiedad intrínseca del material y depende de su compactación. La densidad aparente del suelo ( ) se obtiene secando una muestra de suelo de un volumen conocido a 105 °C hasta peso constante.
Donde:
WSS, Peso de suelo secado a 105 °C hasta peso constante.
VS, Volumen original de la muestra de suelo.
Se debe considerar que para muestras de suelo que varíen su volumen al momento del secado, como suelos con alta concentración de arcillas 2:1, se debe expresar el contenido de agua que poseía la muestra al momento de tomar el volumen.
En construcción se considera la densidad aparente de elementos de obra, como por ejemplo de un muro de ladrillo, que contiene ladrillos, mortero de cemento o de yeso y huecos con aire (cuando el ladrillo es hueco o perforado).